The plethystic inverse of a formal power series
نویسندگان
چکیده
منابع مشابه
The inverse Galois problem over formal power series fields
Introduction The inverse Galois problem asks whether every finite group G occurs as a Galois group over the field Q of rational numbers. We then say that G is realizable over Q. This problem goes back to Hilbert [Hil] who realized Sn and An over Q. Many more groups have been realized over Q since 1892. For example, Shafarevich [Sha] finished in 1958 the work started by Scholz 1936 [Slz] and Rei...
متن کاملFormal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings
We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s ∈ S, {(s1, s2) ∈ S × S : s1s2 = s} is finite. Thus, each element of S has only finitely many factorizations as a product of two elements. For exampl...
متن کاملALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1995
ISSN: 0012-365X
DOI: 10.1016/0012-365x(94)00145-9